Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38403426

RESUMO

Inhalation of crystalline silicon dioxide particles can induce silicosis, and the development of silicosis is closely related to the occurrence and development of pulmonary inflammation and pulmonary fibrosis. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome has been established as a major proinflammatory receptor for sensing environmental danger signals. Activation of NLRP3 inflammasomes after phagocytosis of silicon dioxide particles by pulmonary macrophages may be an important mechanism to induce oxidative stress and sustained inflammatory response in the lung. This article summarizes the role of NLRP3 inflammasome in the inflammatory response and pulmonary fibrosis in silicosis, and analyzes it as a potential target for silicosis treatment.


Assuntos
Fibrose Pulmonar , Silicose , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/metabolismo , Silicose/metabolismo , Dióxido de Silício , Fibrose
2.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397383

RESUMO

Long-term silica particle exposure leads to interstitial pulmonary inflammation and fibrosis, called silicosis. Silica-activated macrophages secrete a wide range of cytokines resulting in persistent inflammation. In addition, silica-stimulated activation of fibroblast is another checkpoint in the progression of silicosis. The pathogenesis after silica exposure is complex, involving intercellular communication and intracellular signaling pathway transduction, which was ignored previously. Exosomes are noteworthy because of their crucial role in intercellular communication by delivering bioactive substances, such as lncRNA. However, the expression profile of exosomal lncRNA in silicosis has not been reported yet. In this study, exosomes were isolated from the peripheral serum of silicosis patients or healthy donors. The exosomal lncRNAs were profiled using high-throughput sequencing technology. Target genes were predicted, and functional annotation was performed using differentially expressed lncRNAs. Eight aberrant expressed exosomal lncRNAs were considered to play a key role in the process of silicosis according to the OPLS-DA. Furthermore, the increased expression of lncRNA MSTRG.43085.16 was testified in vitro. Its target gene PARP1 was critical in regulating apoptosis based on bioinformatics analysis. In addition, the effects of exosomes on macrophage apoptosis and fibroblast activation were checked based on a co-cultured system. Our findings suggested that upregulation of lncRNA MSTRG.43085.16 could regulate silica-induced macrophage apoptosis through elevating PARP1 expression, and promote fibroblast activation, implying that the exosomal lncRNA MSTRG.43085.16 might have potential as a biomarker for the early diagnosis of silicosis.


Assuntos
Exossomos , RNA Longo não Codificante , Silicose , Humanos , Dióxido de Silício , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/genética , Exossomos/metabolismo , Silicose/genética , Silicose/metabolismo , Silicose/patologia , Macrófagos/metabolismo , Fibroblastos/metabolismo , Apoptose/genética
3.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276616

RESUMO

Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-ß) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.


Assuntos
Triterpenos Pentacíclicos , Dióxido de Silício , Silicose , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Dióxido de Silício/farmacologia , Fosfatidilinositol 3-Quinases , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/prevenção & controle , Fibrose , Colágeno/farmacologia , Inflamação , Apoptose , Fibroblastos
4.
Sci Total Environ ; 912: 168948, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048996

RESUMO

The widespread manufacture of silica and its extensive use, and potential release of silica into the environment pose a serious human health hazard. Silicosis, a severe global public health issue, is caused by exposure to silica, leading to persistent inflammation and fibrosis of the lungs. The underlying pathogenic mechanisms of silicosis remain elusive. Lung microbiota dysbiosis is associated with the development of inflammation and fibrosis. However, limited information is currently available regarding the role of lung microbiota in silicosis. The study therefore is designed to conduct a comprehensive analysis of the role of lung microbiota dysbiosis and establish a basis for future investigations into the potential mechanisms underlying silicosis. Here, the pathological and biochemical parameters were used to systematically assessed the degree of inflammation and fibrosis following silica exposure and treatment with combined antibiotics. The underlying mechanisms were studied via integrative multi-omics analyses of the transcriptome and microbiome. Analysis of 16S ribosomal DNA revealed dysbiosis of the microbial community in silicosis, characterized by a predominance of gram-negative bacteria. Exposure to silica has been shown to trigger lung inflammation and fibrosis, leading to an increased concentration of lipopolysaccharides in the bronchoalveolar lavage fluid. Furthermore, Toll-like receptor 4 was identified as a key molecule in the lung microbiota dysbiosis associated with silica-induced lung fibrosis. All of these outcomes can be partially controlled through combined antibiotic administration. The study findings demonstrate that the dysbiosis of lung microbiota enhances silica-induced fibrosis associated with the lipopolysaccharides/Toll-like receptor 4 pathway and provided a promising target for therapeutic intervention of silicosis.


Assuntos
Microbiota , Fibrose Pulmonar , Silicose , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Dióxido de Silício/toxicidade , Receptor 4 Toll-Like , Lipopolissacarídeos , Disbiose/induzido quimicamente , Pulmão/patologia , Silicose/genética , Silicose/metabolismo , Silicose/patologia , Inflamação/induzido quimicamente , Fibrose , Transdução de Sinais
5.
Ecotoxicol Environ Saf ; 269: 115767, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039851

RESUMO

Inhaling silica causes the occupational illness silicosis, which mostly results in the gradual fibrosis of lung tissue. Previous research has demonstrated that hypoxia-inducible factor-1α (HIF-1α) and glycolysis-related genes are up-regulated in silicosis. The role of 2-deoxy-D-glucose (2-DG) as an inhibitor of glycolysis in silicosis mouse models and its molecular mechanisms remain unclear. Therefore, we used 2-DG to observe its effect on pulmonary inflammation and fibrosis in a silicosis mouse model. Furthermore, in vitro cell experiments were conducted to explore the specific mechanisms of HIF-1α. Our study found that 2-DG down-regulated HIF-1α levels in alveolar macrophages induced by silica exposure and reduced the interleukin-1ß (IL-1ß) level in pulmonary inflammation. Additionally, 2-DG reduced silica-induced pulmonary fibrosis. From these findings, we hypothesize that 2-DG reduced glucose transporter 1 (GLUT1) expression by inhibiting glycolysis, which inhibits the expression of HIF-1α and ultimately reduces transcription of the inflammatory cytokine, IL-1ß, thus alleviating lung damage. Therefore, we elucidated the important regulatory role of HIF-1α in an experimental silicosis model and the potential defense mechanisms of 2-DG. These results provide a possible effective strategy for 2-DG in the treatment of silicosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Silicose , Animais , Camundongos , Desoxiglucose/farmacologia , Desoxiglucose/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Macrófagos Alveolares , Pneumonia/metabolismo , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Silicose/tratamento farmacológico , Silicose/metabolismo
6.
Inflammation ; 47(1): 45-59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37938462

RESUMO

Long-term exposure to silica dust can cause silicosis, which is characterized by chronic progressive inflammatory injury, fibroblast activation, and the deposition of extracellular matrix. IRF4 is involved in immune response. However, the potential regulation of IRF4 in silicosis and pulmonary fibrosis remains largely unexplored. In this study, RNA-seq analysis identified the upregulated expression of IRF4 in fibrotic lung tissues of mice exposed to silica particles. And we verified the increased expression of IRF4 in SiO2-treated macrophages and TGF-ß1-treated fibroblasts. We further found that the down-regulation of IRF4 impeded the macrophage polarization and the release of pro-fibrotic factors. Moreover, the down-regulation of IRF4 alleviated the migration, invasion, and the expression of fibrotic molecules in fibroblasts. Using ChIP-qPCR assay, we confirmed that IRF4 regulated the transcriptional activity of the IL-17A promoter, thus stimulated fibroblast activation, migration and invasion. In vivo experiment, the AAV-siIRF4 was designed to interfere with the expression of IRF4 in lung tissues of mice exposed to silica particles. Whole blood, bronchoalveolar lavage fluid and lung tissues were obtained from mice at 7, 14, 28 and 56 days after silica exposure. The results showed that the leukocyte content and inflammatory factors reached a peak at day 14 and remained peak for a long time after IRF4 knockdown. Furthermore, the fibrotic responses of mouse lung tissues were alleviated after IRF4 knockdown. Our study explored the important roles of IRF4 in inflammatory and fibrotic responses, which provided a new target for the treatment of silicosis and pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Pulmão/metabolismo , Silicose/metabolismo , Silicose/patologia , Inflamação/metabolismo , Fibrose , Macrófagos/metabolismo , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL
7.
J Hazard Mater ; 465: 133199, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103296

RESUMO

Long term exposure to silica particles leads to various diseases, among which silicosis is of great concern. Silicosis is an interstitial lung disease caused by inhalation of silica particles in production environments. However, the mechanisms underlying silicosis remains unclear. Our previous studies revealed that progranulin (Pgrn) promoted the expression of pro-inflammatory factors in alveolar macrophages treated with silica particles and the secretion of extracellular matrix of pulmonary fibroblasts. Nevertheless, the role of Pgrn in silica particles-induced silicosis in vivo was unknown. This study found that silica particles increased Pgrn expression in silicosis patients. Pgrn deficiency reduced lung inflammation and fibrosis in silica particles-induced silicosis mouse models. Subsequently, based on transcriptional sequencing and interleukin (Il) -6 knockout mouse models, results demonstrated that Pgrn deficiency might decrease silicosis inflammation by reducing the production of Il-6, thereby modulating pulmonary fibrosis in the early stage of silicosis mouse models. Furthermore, another mechanism through which Pgrn deficiency reduced fibrosis in silicosis mouse models was the regulation of the transforming growth factor (Tgf) -ß1/Smad signaling pathway. Conclusively, Pgrn contributed to silicosis inflammation and fibrosis induced by silica particles, indicating that Pgrn could be a promising therapeutic target.


Assuntos
Pneumonia , Silicose , Animais , Humanos , Camundongos , Fibrose , Inflamação , Interleucina-6 , Progranulinas/uso terapêutico , Dióxido de Silício , Silicose/tratamento farmacológico , Silicose/etiologia , Silicose/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/uso terapêutico
8.
Int Immunopharmacol ; 125(Pt B): 111068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948856

RESUMO

Silicosis, a highly lethal occupational respiratory disease characterized by irreversible pulmonary fibrosis, remains challenging to treat due to its unclear pathogenesis. In this study, bioinformatics, network pharmacology, and experimental validation were combined to explore potential mechanisms and therapeutic drugs for silicosis. First, the differentially expressed genes(DEGs)and pathway enrichment in pulmonary fibrosis were identified by GO and KEGG analysis. Next, the differential genes were submitted to cMap database for drug prediction and celastrol stood out as the most promising candidate drug. Then, network pharmacology analysis identified pharmacological targets of celastrol and demonstrated that celastrol could regulate JAK-STAT, MAPK, and Toll-like receptor signaling pathways. Finally, we verified the therapeutic role and mechanism of celastrol on silicosis. In vivo, celastrol significantly ameliorated CS-induced inflammation and fibrosis in silicosis mice, including inflammatory cell infiltration, collagen fiber and extracellular matrix deposition, fibroblast activation and related factor expression. Moreover, it dramatically improved lung respiratory function of silicosis mice. In vitro, celastrol suppressed CS-induced cytokine expression, apoptosis of macrophages and activation of Stat3 and Erk1/2 signals. Overall, our research identified and verified celastrol as a novel and promising candidate drug for silicosis.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Farmacologia em Rede , Silicose/tratamento farmacológico , Silicose/metabolismo , Biologia Computacional
9.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 41(10): 801-807, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37935544

RESUMO

Objective: To investigate the intervention effect and its mechanism of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) on silicosis induced by silica (SiO(2)) in rats. Methods: In October 2021, 24 SPF SD male rats were divided into control group, silicosis model group and apocynin intervention group according to random number table method, with 8 rats in each group. SiO(2) was exposed by one-time intratracheal instillation. The rats in the apocynin intervention group were intraperitoneally injected with apocynin 50 mg/kg, 3 times a week, on the second day after treatment. The rats were sacrificed 28 days later, and lung coefficients were calculated after lung tissues were weighed. Hematoxylin-eosin staining and Masson staining were used to observe the lung histopathological changes in each group, respectively. The levels of NOX, reactive oxygen species (ROS), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in lung tissue were detected. The expressions of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were determined by Enzyme-Linked Immunosorbent Assay (ELISA). The level of hydroxyproline (HYP) was detected by alkaline hydrolysate. The expressions of transforming growth factor beta 1 (TGF-ß1), E-cadherin (E-cad) and α-smooth muscle actin (α-SMA) in lung tissue were detected by Western blotting. Results: Compared with the control group, the body weight of silicosis model group was decreased, the lung tissue showed obvious inflammatory infiltration and fibrosis, and the levels of lung coefficient, IL-1ß, IL-6, TNF-α and TGF-ß1 were significantly increased (P<0.05). Compared with the silicosis model group, the lung tissue injury in the apocynin intervention group was significantly improved, the lung coefficient, NOX, ROS, MDA, IL-1ß, IL-6, TNF-α and TGF-ß1 levels were decreased, and the activity of GSH-Px was increased (P<0.05). Compared with the silicosis model group, the expressions of HYP and α-SMA were decreased and the level of E-cad was increased in the apocynin intervention group (P<0.05) . Conclusion: Apocynin may alleviate SiO(2)-induced fibrosis in silicosis rats by reducing oxidative stress, the release of inflammatory factors and inhibiting the process of epithelial-mesenchymal transition.


Assuntos
Fibrose Pulmonar , Silicose , Ratos , Masculino , Animais , Dióxido de Silício/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Silicose/tratamento farmacológico , Silicose/metabolismo
10.
Ecotoxicol Environ Saf ; 268: 115693, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976936

RESUMO

Macrophage pyroptosis has recently been involved in some inflammatory and fibrosis diseases, however, the role of macrophage pyroptosis in silica-induced pulmonary fibrosis has not been fully elucidated. In this study, we explored the role of macrophage pyroptosis in silicosis in vivo and in vitro. A mouse model of silicosis was established and mice were sacrificed at 7, 14, and 28 days after exposure of silica. The results revealed that the expression of GSDMD and other pyroptosis-related indicators was up-regulated obviously at 14 days after silica exposure, indicating that silica induced pyroptosis in vivo. In vitro, human monocytic leukemia cells (THP-1) and human lung fibroblasts (MRC-5) were used to detect the relationship between macrophage pyroptosis and lung fibroblasts. It showed that silica increased the levels of GSDMD and other pyroptosis-related indicators remarkably in macrophages and the supernatant of macrophage stimulated by silica could promote the upregulation of fibrosis markers in fibroblasts. However, GSDMD knockdown suppressed silica-induced macrophage pyroptosis and alleviated the upregulation of fibrosis markers in fibroblasts, suggesting the important role of macrophage pyroptosis in the activation of myofibroblasts during the progression of silicosis. Taken together, it showed that silica could induce macrophage pyroptosis and inhibiting macrophage pyroptosis could be a feasible clinical strategy to alleviate silicosis.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Piroptose , Macrófagos/metabolismo , Silicose/metabolismo , Fibrose
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(8): 1152-1162, 2023 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37875355

RESUMO

OBJECTIVES: The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy. METHODS: The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 µg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 µg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting. RESULTS: After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 µg/mL group, the survival rates of macrophages in the 100, 200, and 400 µg/mL groups were significantly decreased, and the concentrations of TGF-ß1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 µg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-ß1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 µg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group. CONCLUSIONS: Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Silicose , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1 , Sirolimo , Proteína Beclina-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Poeira , Serina-Treonina Quinases TOR/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Silicose/metabolismo , Macrófagos/metabolismo , Autofagia
12.
J Control Release ; 364: 618-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848136

RESUMO

Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(ß-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKß, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.


Assuntos
Histona Desacetilases , Fibrose Pulmonar , Silicose , Animais , Camundongos , Acetilação , Histona Desacetilases/efeitos adversos , Histona Desacetilases/metabolismo , Inflamação , NF-kappa B/metabolismo , Proteômica , Espécies Reativas de Oxigênio , Dióxido de Silício , Silicose/tratamento farmacológico , Silicose/metabolismo
13.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709227

RESUMO

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Pneumonia , Silicose , Camundongos , Animais , Pulmão , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Silicose/terapia , Silicose/metabolismo , Silicose/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Macrófagos , Inflamação/patologia , Anti-Inflamatórios/farmacologia
14.
Sci Total Environ ; 902: 166443, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611700

RESUMO

Exposure to crystalline silica leads to health effects beyond occupational silicosis. Exercise training's potential benefits on pulmonary diseases yield inconsistent outcomes. In this study, we utilized experimental silicotic mice subjected to exercise training and pharmacological interventions, including interleukin-17A (IL-17A) neutralizing antibody or clodronate liposome for macrophage depletion. Findings reveal exercise training's ability to mitigate silicosis progression in mice by suppressing scavenger receptor B (SRB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Toll-like receptor 4 (TLR4) pathways. Macrophage-derived IL-17A emerges as primary source and trigger for silica-induced pulmonary inflammation and fibrosis. Exercise training effectively inhibits IL-17A-CXC motif chemokine ligand 5 (CXCL5)-Chemokine (C-X-C motif) Receptor 2 (CXCR2) axis in silicotic mice. Our study evidences exercise training's potential to reduce collagen deposition, preserve elastic fibers, slow pulmonary fibrosis advancement, and enhance pulmonary function post silica exposure by impeding macrophage-derived IL-17A-CXCL5-CXCR2 axis.


Assuntos
Exercício Físico , Fibrose Pulmonar , Silicose , Animais , Camundongos , Quimiocinas/metabolismo , Interleucina-17/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Silicose/terapia , Silicose/metabolismo , Quimiocina CXCL5/metabolismo , Receptores de Interleucina-8B/metabolismo , Inflamação , Exercício Físico/fisiologia
15.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511199

RESUMO

Silicosis is a refractory pneumoconiosis of unknown etiology that is characterized by diffuse lung fibrosis, and microRNA (miRNA) dysregulation is connected to silicosis. Emerging evidence suggests that miRNAs modulate pulmonary fibrosis through autophagy; however, its underlying molecular mechanism remains unclear. In agreement with miRNA microarray analysis, the qRT-PCR results showed that miR-29a-3p was significantly decreased in the pulmonary fibrosis model both in vitro and in vivo. Increased autophagosome was observed via transmission electron microscopy in lung epithelial cell models and lung tissue of silicosis mice. The expression of autophagy-related proteins LC3α/ß and Beclin1 were upregulated. The results from using 3-methyladenine, an autophagy inhibitor, or rapamycin, an autophagy inducer, together with TGF-ß1, indicated that autophagy attenuates fibrosis by protecting lung epithelial cells. In TGF-ß1-treated TC-1 cells, transfection with miR-29a-3p mimics activated protective autophagy and reduced alpha-smooth muscle actin and collagen I expression. miRNA TargetScan predicted, and dual-luciferase reporter experiments identified Akt3 as a direct target of miR-29a-3p. Furthermore, Akt3 expression was significantly elevated in the silicosis mouse model and TGF-ß1-treated TC-1 cells. The mammalian target of rapamycin (mTOR) is a central regulator of the autophagy process. Silencing Akt3 inhibited the transduction of the mTOR signaling pathway and activated autophagy in TGF-ß1-treated TC-1 cells. These results show that miR-29a-3p overexpression can partially reverse the fibrotic effects by activating autophagy of the pulmonary epithelial cells regulated by the Akt3/mTOR pathway. Therefore, targeting miR-29a-3p may provide a new therapeutic strategy for silica-induced pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Silicose , Animais , Camundongos , Autofagia/genética , Fibrose/genética , Fibrose/metabolismo , Mamíferos/metabolismo , MicroRNAs/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Dióxido de Silício/farmacologia , Silicose/etiologia , Silicose/genética , Silicose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Humanos
16.
J Gene Med ; 25(8): e3518, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37403412

RESUMO

BACKGROUND: The overwhelming majority of subjects in the current silicosis mRNA and microRNA (miRNA) expression profile are of human blood, lung cells or a rat model, which puts limits on the understanding of silicosis pathogenesis and therapy. To address the limitations, our investigation was focused on differentially expressed mRNA and miRNA profiles in lung tissue from silicosis patients to explore potential biomarker for early detection of silicosis. METHODS: A transcriptome study was conducted based on lung tissue from 15 silicosis patients and eight normal people, and blood samples from 404 silicosis patients and 177 normal people. Three early stage silicosis, five advanced silicosis and four normal lung tissues were randomly selected for microarray processing and analyze. The differentially expressed mRNAs were further used to conduct Gene Ontology and pathway analyses. Series test of cluster was performed to explore possible changes in differentially expressed mRNA and miRNA expression patterns during the process of silicosis. The blood samples and remaining lung tissues were used in a quantitative real-time PCR (RT-qPCR) (RT-qPCR). RESULTS: In total, 1417 and 241 differentially expressed mRNAs and miRNAs were identified between lung tissue from silicosis patients and normal people (p < 0.05). However, there was no significant difference in most mRNA or miRNA expression between early stage and advanced stage silicosis lung tissues. RT-qPCR validation results in lung tissues showed expression of four mRNAs (HIF1A, SOCS3, GNAI3 and PTEN) and seven miRNAs was significantly down-regulated compared to those of control group. Nevertheless, PTEN and GNAI3 expression was significantly up-regulated (p < 0.001) in blood samples. The bisulfite sequencing PCR demonstrated that PTEN had significantly decreased the methylation rate in blood samples of silicosis patients. CONCLUSIONS: PTEN might be a potential biomarker for silicosis as a result of low methylation in the blood.


Assuntos
MicroRNAs , Silicose , Humanos , Ratos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Silicose/genética , Silicose/metabolismo , Biomarcadores/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Perfilação da Expressão Gênica
17.
J Transl Med ; 21(1): 365, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280614

RESUMO

BACKGROUND: Silica-induced pulmonary fibrosis (silicosis) is a diffuse interstitial fibrotic disease characterized by the massive deposition of extracellular matrix in lung tissue. Fibroblast to myofibroblast differentiation is crucial for the disease progression. Inhibiting myofibroblast differentiation may be an effective way for pulmonary fibrosis treatment. METHODS: The experiments were conducted in TGF-ß treated human lung fibroblasts to induce myofibroblast differentiation in vitro and silica treated mice to induce pulmonary fibrosis in vivo. RESULTS: By quantitative mass spectrometry, we revealed that proteins involved in mitochondrial folate metabolism were specifically upregulated during myofibroblast differentiation following TGF-ß stimulation. The expression level of proteins in mitochondrial folate pathway, MTHFD2 and SLC25A32, negatively regulated myofibroblast differentiation. Moreover, plasma folate concentration was significantly reduced in patients and mice with silicosis. Folate supplementation elevated the expression of MTHFD2 and SLC25A32, alleviated oxidative stress and effectively suppressed myofibroblast differentiation and silica-induced pulmonary fibrosis in mice. CONCLUSION: Our study suggests that mitochondrial folate pathway regulates myofibroblast differentiation and could serve as a potential target for ameliorating silica-induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Miofibroblastos , Dióxido de Silício/toxicidade , Pulmão/patologia , Fibroblastos/metabolismo , Silicose/metabolismo , Silicose/patologia , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL
18.
Ecotoxicol Environ Saf ; 261: 115087, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285680

RESUMO

Long-term inhalation of silica particles in the workplace causes silicosis, which is incurable and seriously endangers the health of workers. It is believed that silicosis is caused by an imbalance of the pulmonary immune microenvironment, in which pulmonary phagocytes play a crucial role. As an emerging immunomodulatory factor, it is unclear whether T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) participate in silicosis by modulating pulmonary phagocytes function. The purpose of this study was to investigate the dynamic changes of the TIM-3 in pulmonary macrophages, dendritic cells (DCs), and monocytes during the development of silicosis in mice. The plasma levels of soluble TIM-3 in silicosis patients were also examined. Flow cytometry was used to identify alveolar macrophages (AMs), interstitial macrophages (IMs), CD11b+ DC, CD103+ DC, Ly6C+, and Ly6C- monocytes in mouse lung tissues, and further analyses were conducted on the expression of TIM-3. Results showed that soluble TIM-3 was significantly elevated in plasma of silicosis patients, and the level of which was higher in stage II and III patients than that in stage I. In silicosis mice, the protein and mRNA levels of TIM-3 and Galectin9 were significantly upregulated in lung tissues. Specific to pulmonary phagocytes, silica exposure affected TIM-3 expression in a cell-specific and dynamic manner. In macrophages, TIM-3 expression upregulated in AM after 28 days and 56 days of silica instillation, while the expression of TIM-3 in IM decreased at all observation time points. In DCs, silica exposure only caused a decrease of TIM-3 expression in CD11b+ DCs. In monocytes, TIM-3 dynamics in Ly6C+ and Ly6C- monocytes were generally consistent during silicosis development, which significant decrease after 7 and 28 days of silica exposure. In conclusion, TIM-3 may mediate the development of silicosis by regulating pulmonary phagocytes.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Silicose , Camundongos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Pulmão/metabolismo , Silicose/metabolismo , Fagócitos , Dióxido de Silício/toxicidade
19.
J Hazard Mater ; 458: 131907, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379600

RESUMO

Silica is utilized extensively in industrial and commercial applications as a chemical raw material, increasing its exposure and hazardous potential to populations, with silicosis serving as an important representative. Silicosis is characterized by persistent lung inflammation and fibrosis, for which the underlying pathogenesis of silicosis is unclear. Studies have shown that the stimulating interferon gene (STING) participates in various inflammatory and fibrotic lesions. Therefore, we speculated that STING might also play a key role in silicosis. Here we found that silica particles drove the double-stranded DNA (dsDNA) release to activate the STING signal pathway, contributing to alveolar macrophages (AMs) polarization by secreting diverse cytokines. Then, multiple cytokines could generate a micro-environment to exacerbate inflammation and promote the activation of lung fibroblasts, hastening fibrosis. Intriguingly, STING was also crucial for the fibrotic effects induced by lung fibroblasts. Loss of STING could effectively inhibit silica particles-induced pro-inflammatory and pro-fibrotic effects by regulating macrophages polarization and lung fibroblasts activation to alleviate silicosis. Collectively, our results have revealed a novel pathogenesis of silica particles-caused silicosis mediated by the STING signal pathway, indicating that STING may be regarded as a promising therapeutic target in the treatment of silicosis.


Assuntos
Dióxido de Silício , Silicose , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Silicose/etiologia , Silicose/metabolismo , Silicose/patologia , Fibrose , Citocinas/metabolismo , Fibroblastos/patologia
20.
Int Immunopharmacol ; 121: 110508, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339568

RESUMO

Long-term silica (SiO2) exposure led to irreversible lung fibrosis, in which epithelial-mesenchymal transition (EMT) played an essential role. A novel lncRNA MSTRG.91634.7 in the peripheral exosomes of silicosis patients was reported in our previous study, which could remold the pathological process of silicosis. However, whether its regulatory role on the development of silicosis was related to EMT process is unclear, and its mechanism remains to be further studied. In this study, up-regulating lncRNA MSTRG91634.7 restricted SiO2-activated EMT and restored mitochondrial homeostasis binding to PINK1 in vitro. Moreover, overexpressing PINK1 could inhibit SiO2-activated EMT in pulmonary inflammation and fibrosis in mice. Meanwhile, PINK1 contributed to restoring the SiO2-induced mitochondrial dysfunction in mice lung. Our results revealed that exosomal lncRNA MSTRG.91634.7 from macrophages could restore mitochondrial homeostasis to restrict the SiO2-activated EMT by binding to PINK1 during pulmonary inflammation and fibrosis due to SiO2 exposure.


Assuntos
Fibrose Pulmonar , RNA Longo não Codificante , Silicose , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício , Pulmão/patologia , RNA Longo não Codificante/genética , Silicose/metabolismo , Fibrose , Proteínas Quinases/metabolismo , Transição Epitelial-Mesenquimal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...